Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 88(10): e202300344, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37749065

RESUMEN

The catalytic performance of nanoparticles (NPs) of Ag anchored on different supports was evaluated during the selective hydrogenation of 1-pentyne and the purification of a mixture of 1-pentene/1-pentyne (70/30 vol %). The catalysts were identified: Ag/Al (Ag supported on É£-Al2 O3 ), Ag/Al-Mg (Ag supported on É£-Al2 O3 modified with Mg), Ag/Ca (Ag supported on CaCO3 ) and Ag/RX3 (Ag supported on activated carbon-type: RX3). In addition, in situ DRIFTS analysis of 1-pentyne adsorption on each support, catalyst, and 1-pentyne hydrogenation were investigated. The results showed that the synthesized catalysts were active and very selective (≥85 %) for obtaining the desired product (1-pentene). Different adsorbed species (-C≡C- and -C=C-) were observed on the supports and catalysts surface using in situ DRIFT analysis, which can be correlated to the activity and high selectivity reached. The role of the supports and electronic properties over Ag improve the H2 dissociative chemisorption during the hydrogenation reactions; promoting the selectivity and the high catalytic performance. Ag/Al and Ag/Al-Mg were the most active catalysts. This was due to the synergism between the active Ag/Ag+ species and the supports (electronic effects). The results show that Ag/Al and Ag/Al-Mg catalysts have favorable properties and are promising for the alkyne hydrogenation and olefin purification reactions.

2.
Front Chem ; 9: 671980, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34017821

RESUMEN

This study focuses on examining the isomerization of allyl alcohol using ruthenium (Ru) supported on alumina as a heterogeneous catalyst. The synthesized Ru/Al solids were characterized by various characterization techniques. The content of Ru was estimated by the energy dispersive x-ray technique. The x-ray diffraction (XRD) confirmed the presence of phases in the support and active species in the catalysts. The surface area of the support after Ru impregnation and the pore volume were determined by nitrogen physisorption. The analysis of programmed temperature (TPR and TPO) shows different redox sites which is confirmed by XPS. The catalytic results suggest a dependence on the amount of available metallic Ru, as well as the importance of the continuous regeneration of the metal using H2 to achieve a good conversion of the allyl alcohol. For comparison purposes, the commercial Ru on alumina 5% (CAS 908142) was used. The results show up to 68% alcohol conversion and 27% yield of the isomerization product using Ru(1,5.4h)/Al catalyst in comparison with 86% conversion and 39% yield of the isomerization product using CAS 908142. In contrast, our catalysts always presented higher TOF values (149-160) in comparison with CAS 908142 (101).

3.
ScientificWorldJournal ; 2013: 528453, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24348168

RESUMEN

Palladium, platinum, and ruthenium supported on activated carbon were used as catalysts for the selective hydrogenation of 1-heptyne, a terminal alkyne. All catalysts were characterized by temperature programmed reduction, X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy. TPR and XPS suggest that the metal in all catalysts is reduced after the pretreatment with H2 at 673 K. The TPR trace of the PdNRX catalyst shows that the support surface groups are greatly modified as a consequence of the use of HNO3 during the catalyst preparation. During the hydrogenation of 1-heptyne, both palladium catalysts were more active and selective than the platinum and ruthenium catalysts. The activity order of the catalysts is as follows: PdClRX>PdNRX>PtClRX≫RuClRX. This superior performance of PdClRX was attributed in part to the total occupancy of the d electronic levels of the Pd metal that is supposed to promote the rupture of the H2 bond during the hydrogenation reaction. The activity differences between PdClRX and PdNRX catalysts could be attributed to a better accessibility of the substrate to the active sites, as a consequence of steric and electronic effects of the superficial support groups. The order for the selectivity to 1-heptene is as follows: PdClRX=PdNRX>RuClRX>PtClRX, and it can be mainly attributed to thermodynamic effects.


Asunto(s)
Carbón Orgánico/química , Metales/química , Catálisis , Hidrogenación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...